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to overcome the time-stepping (or the pole) problem, in-
volves coarsening the grid near the singular points, thusA method for temporal integration of the Navier–Stokes equations

written in cylindrical coordinates is described. The objective is to allowing for the use of explicit time-integration. For in-
avoid the severe time-step limitation usually encountered in con- stance, Kurihara [5] developed what he called a spherical
fined axisymmetric geometries (e.g., pipe flow), caused by a fine grid system in order to reduce the grid spacing close toazimuthal grid spacing around the centerline and the desire to refine

the poles in a simulation of the general circulation of thethe grid in the radial direction near walls. Avoiding severe time-
atmosphere. Umsheid and Sankar-Rao [6], also interestedstep limitations usually involves treating all terms with derivatives in

the radial and azimuthal directions with an implicit time-integration in the general circulation problem, filtered the small scale
scheme. However, this leads to a set of coupled nonlinear equations portion of the solution near the poles. Filtering was done
which generally require complex and costly solution procedures.

either in physical space or in the Fourier space. This effec-The scheme described in this paper decomposes the computational
tively coarsens the grid near the poles, thus allowing fordomain into two regions. Within each region only the derivatives

in one coordinate direction is treated implicitly. Conditions at the larger time-steps.
interface between the regions are determined to maintain the overall In some axisymmetric cases the problem has been ad-
temporal accuracy of the basic time-integration schemes. Results dressed by treating all terms (both convective and diffu-
from a direct numerical simulation (DNS) of turbulent pipe flow are

sive) with derivatives in the azimuthal direction implicitlyvalidated against computational and experimental results from the
(e.g., [2, 7]). However, the drawback of this approach isliterature. It is demonstrated that this new scheme allows for larger

time-steps than other schemes, leading to significant CPU the time-step restriction due to radial refinement of the
savings. Q 1996 Academic Press, Inc. mesh near walls. One remedy would be to treat all terms

with derivatives in both the radial and azimuthal directions
implicitly. This procedure gives a set of nonlinear coupled

1. INTRODUCTION equations which usually require complicated and costly
solution algorithms (often involving iterations or approxi-This paper describes a method developed for temporal
mate factorization techniques).integration of the unsteady, incompressible, Navier–

The need to treat the convective terms (with derivativeStokes equations written in cylindrical coordinates. There
in the azimuthal direction) implicitly near the centerlineare two main problems associated with solving the Navier–
arises because the azimuthal velocity component is usuallyStokes equations in cylindrical (or spherical) coordinates.
significant in the core region of the pipe. The more tradi-The first is related to the treatment of the coordinate singu-
tional approach of treating all the diffusive terms implicitlylarity at the centerline (r 5 0). Solutions to this problem
and all the convective terms explicitly (see [8]) is basedare described in the literature (e.g., [1–4]) and are not
on the assumption that the grid is fine only near walls,included in this paper.
where the wall-normal velocity is very small. In such casesA second, and equally important, problem is related to
the convective terms are usually not important in terms ofthe fact that when using cylindrical coordinates the azi-
limiting the time-step. However, in any situation where themuthal grid resolution is proportional to the radial distance
grid is fine in a region with significant convection velocities,from the centerline. For confined axisymmetric turbulent
implicit treatment of the convective terms would have toflows (e.g., pipe flow) the azimuthal grid resolution require-
be considered. (See [1] for other examples of such flows.)ment is usually dictated by the resolution of the near wall

The method described in this paper is based on thecoherent structures of the flow. This leads to a significant
realization that in the central region of the flow (i.e., aoverresolution in the azimuthal direction around the cen-
region enclosing the centerline) terms with derivatives interline which leads to severe time-step limitations if explicit
the azimuthal direction will be the most restrictive in termstime-integration schemes are used.

One technique that has been used in the past in order of limiting the time-step. Both the axial and radial grid
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spacings are usually large in this region and the simpler tion is not limited to cylinderical or spherical geometries,
it has potential applications in computations of flows inexplicit time-integration schemes can be used on terms

with derivatives in these directions. At the wall (of a pipe) complex geometries where the grid is refined in several
separate regions.the radial grid spacing is usually significantly finer than

both the axial and azimuthal grid spacings, meaning that
only terms with derivatives in the radial direction (in most 2. GOVERNING EQUATIONS
cases only the diffusive terms) need to be treated with

The governing equations are the incompressible Navier–implicit time-integrations schemes.
Stokes and continuity equations. Body forces have beenThe basic idea behind the method is to divide the compu-
neglected and the viscosity is assumed to be a function oftational domain into two separate regions. One is denoted
space (in order to account for simple turbulence models).the ‘‘core region’’ and extends from the centerline to some
These equations can be written in vector form asradius rc , i.e., 0 , r , rc . In this region all the terms in

the momentum equations with derivatives in the azimuthal ­u
­t

5 2=p 1 = ? s, (1)
direction are treated implicitly. (Note that because large
azimuthal convection velocities are expected around the

= ? u 5 0, (2)
centerline, convective as well as diffusive terms will have to
be treated implicitly). All other terms are treated explicitly.

where u is the velocity vector and s is a symmetric tensorThe second region is denoted the ‘‘outer region’’ and con-
given bysists of the remaining part of the domain, i.e. rc , r , R,

where R is the radius of the pipe. (This region includes a
s 5 n=u 1 n(=u)T 2 u ^ u. (3)solid wall, perpendicular to the radial direction). In this

region the diffusive terms, and in some cases also the con-
vective terms (see [1]), with derivatives in the radial direc-

The components of s are (in cylindrical coordinates)tion, are treated implicitly. All other terms are treated
explicitly. Conditions at the interface between the two re-
gions are determined such that the overall temporal accu- sxx 5 2n

­ux

­x
2 uxux ,

racy of the basic time-integration scheme is conserved.
The use of semi-implicit schemes in the calculation of

flows in geometries that have singular points does not in suu 5 2n S1
r

­uu

­u
1

ur

r D2 uuuu ,
itself represent a new idea. For instance, Oberhuber [9]
used the semi-implicit method proposed by Kwizak and

sru 5 n S­uu

­r
1

1
r

­ur

­u
2

uu

r D2 uruu ,
(4)

Robert [10] in a simulation of the Atlantic circulation.
Eggels et al. [2] and Wagner and Friedrich [7] employed
a semi-implicit scheme to integrate the Navier–Stokes

srr 5 2n
­ur

­r
2 urur ,equations in axisymmetric geometries. The new feature of

the method described in this paper is a temporal decompo-
sition of the computational domain. The computational

sxr 5 n S­ur

­x
1

­ux

­r D2 uxur ,domain is decomposed in order to avoid having a fine grid
spacing in more than one direction within each of the
regions. This gives the flexibility of using different time- sxu 5 n S­uu

­x
1

1
r

­ux

­u
D2 uxuu .

integration schemes in different parts of the computational
domain and allows for implicit treatment of only one coor-
dinate direction which greatly simplifies the solution proce- In this paper x, r, and u are used to denote the axial,
dure as well as reduces computational time. radial, and azimuthal directions, respectively; n is the total

The proposed method is validated by applying it to direct viscosity which in DNS is equal to the molecular viscosity
numerical simulation (DNS) of turbulent flow in a circular and in large eddy simulation (LES) is equal to the sum of
pipe. However, the method has potentially a wider range the molecular and eddy-viscosity; ux , ur , and uu are the
of applications, particularly in fundamental turbulence components of the velocity vector in the axial, radial, and
simulations. For instance, Akselvoll and Moin [1] used the azimuthal directions, respectively.
present method to calculate mixing of turbulent confined
coannular jets. The method allowed for a significant in- 3. TEMPORAL INTEGRATION SCHEME
crease in time-step compared with other more traditional
methods. Other applications are calculations of diffusers, The principle of decomposing the computational domain

into two regions can be used with any combination ofjets, vortex rings, etc. The utility of temporal decomposi-
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explicit/implicit time-integration schemes. However, for
the purpose of the present illustrations a three-step pre-
dictor–corrector algorithm of the Runge–Kutta genre is
used [11, 12]. This is a hybrid scheme essentially using RK3
(third-order accurate) for the explicitly treated terms and
Crank–Nicolson (second order accurate) for the implicitly
treated terms. The three-step time-advancement scheme
for the Navier–Stokes and continuity equations can be
written

uq
i 2 uq21

i

Dt
5 22bqGi( pq) 1 bqhBq

i 1 Bq21
i j

1 cqAq21
i 1 zqAq22

i , (5)
Di(uq

i ) 5 0, (6)

where A and B are operators acting on the velocity vector,
and subscript i represents x, r, or u. A includes terms treated
explicitly and B includes terms treated implicitly. G is the
gradient operator and D is the divergence operator. Super-
script q (q 5 1, 2, 3) represents the Runge–Kutta substeps
such that uq21 5 un for q 5 1 and uq 5 un11 for FIG. 1. Computational domain and the staggered mesh system. The
q 5 3. (Note that zq 5 0 for q 5 1). Superscript n represents shaded area represents the core region which is surrounded by the outer
the full time-step. The coefficients, bq , cq , and zq are se- region: s and h are locations where ur and uu are defined, respectively.

lected such that the total time advancement is third-order
accurate for the explicitly treated terms and second-order
accurate for the implicitly treated terms. These coeffi- implicit operators, A and B. The cross section of the two
cients are regions are illustrated in Fig. 1.

Due to the fine azimuthal grid spacing in the near center-
line region it is desirable to treat all terms (convective
and diffusive) with derivatives in the azimuthal direction

b1 5 aRg, b2 5 aQg, b3 5 Ah,

c1 5 aIg, c2 5 aTs, c3 5 Df,

z1 5 0, z2 5 2AhJ;, z3 5 2aTs,
implicitly in the core region. (This will become apparent
in Section 8). The operators A and B therefore become

O3
q51

2bq 5 O3
q51

(cq 1 zq) 5 1.
Ax 5

­sxx

­x
1

1
r

­rsxr

­r
1

1
r

­

­u
Sn

­uu

­xD . (7a)

For further details of this hybrid time-integration scheme Ar 5
­srx

­x
1

1
r

­rsrr

­rthe reader is referred to Refs. [1, 11, or 12].
In the present calculations, the standard fractional step

method is used to remove the implicit pressure dependence 1
1
r

­

­u
Sn

­uu

­r
2 n

uu

r D2
suu

r
. (7b)

in Eq. (5) and to enforce the equation of continuity. The
reader is referred to [1, 8, 13, or 14] for this and other

Au 5
­sux

­x
1

1
r

­rsur

­r
1

1
r

­

­u
S2nur

r D1
sur

r
. (7c)versions of the fractional step method.

4. DOMAIN DECOMPOSITION Bx 5
1
r

­

­u
Sn

r
­ux

­u
D2

1
r

­uxuu

­u
. (8a)

The spatial discretization scheme used in the present
calculations is based on the second-order finite volume Br 5

1
r

­

­u
Sn

r
­ur

­u
D2

1
r

­uruu

­u
. (8b)

formulation. The governing equations are solved on a stag-
gered grid [15]. The computational domain is divided into
two separate regions in which different terms of the Na- Bu 5

1
r

­

­u
S2

n
r

­uu

­u
D2

1
r

­uuuu

­u
. (8c)

vier–Stokes equations are grouped into the explicit and
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From Eq. (8c) it is apparent that the azimuthal momen-
tum equation is non-linear (in uu). However, the axial and Br 5

1
r

­

­r S2rn
­ur

­r D2
1
r

­(rurur)
­r

. (10b)
radial momentum equations are linear in ux and ur, respec-
tively, although they will require uq

u in order to calculate
the coefficients in the tridiagonal matrices (see the next Bu 5

1
r

­

­r Srn
­uu

­r D2
1
r

­(ruuur)
­r

. (10c)
section). The azimuthal momentum equation, on the other
hand, is uncoupled from the two other equations. The

In this region, the radial momentum equation is nonlin-solution procedure therefore involves linearizing the azi-
ear and has to be linearized. This equation must then bemuthal momentum equation (retaining second-order accu-
solved prior to solving the axial and azimuthal momentumracy) and solving it first. The axial and radial momentum
equations since the two latter equations require uq

r in orderequations can then be solved.
to calculate the coefficients in the tridiagonal matrices.Implicit treatment of diffusive and convective terms with

derivatives in only one coordinate direction leads to only
one nonlinear equation. This means that only one of the 5. TREATMENT AT THE INTERFACE
convective terms in one of the momentum equations has

The first step of the solution procedure involves inte-to be linearized, after which the entire set of equations
grating the momentum equations in the core region. Forcan easily be solved. In contrast, if convective terms in
the axial and azimuthal momentum equations, integrationmore than one coordinate direction were treated implicitly
includes all points marked by solid symbols (Fig. 1), up tothe result would be a coupled set of nonlinear equations
and including the points with radial index j 5 J. The radialrequiring a significantly more complex solution procedure.
momentum equation, on the other hand, can only be inte-Note that cross-terms (i.e., diffusive terms with mixed
grated up to and including points with radial index j 5derivatives, which are present because of a nonuniform
J 2 1, as seen by studying the coefficients aq , bq , and cqviscosity) are all treated explicitly, despite the fact that
in Eq. (11b). Equation (11) shows the general form of thesome contain azimuthal derivatives. The justification for
discrete momentum equations in the core region using Eqs.doing this is that Dx and Dr are much larger than rDu
(7) and (8) for the A and B operators. The coefficients aq ,around the centerline, and the cross-terms are therefore
bq , and cq are the elements of the diagonals of the tridiago-not nearly as important as the diffusive terms (already
nal matrix formed on the left-hand side of the equations.treated implicitly) in terms of causing time-step limitations.

The axial momentum equation ( j # J) isHowever, they may in some cases be important compared
with convective terms, particularly if there are large spatial
gradients in the viscosity, although this has not been the aquq

i, j,k21 1 bquq
i, j,k 1 cquq

i, j,k11 5 RHSq21
i, j,k , (11a)

case in any of the calculations performed by the authors
(see [1]). where the functional dependence of the coefficients are

The solution procedure in the outer region is identical
to that in the core region except that all terms with deriva-

aq 5 aq(wq
i11, j,k21 , wq

i, j,k21),tives in the radial direction are treated implicitly. (For flow
in a pipe it is not necessary to treat the non-linear term bq 5 bq(wq

i11, j,k21 , wq
i, j,k21 , wq

i11, j,k , wq
i, j,k),

implicitly; however, it may be important in other geome-
cq 5 cq(wq

i11, j,k , wq
i, j,k).tries as shown in [1]). The A and B operators in the outer

region become
The radial momentum equation ( j # J 2 1) is

aqvq
i, j,k21 , 1 bqvq

i, j,k 1 cqvq
i, j,k11 5 RHSq21

i, j,k , (11b)Ax 5
­sxx
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whereAr 5
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aq 5 aq(wq
i, j11,k21, wq

i, j,k21)Au 5
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­x
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bq 5 bq(wq
i, j11,k21 , wq

i, j,k21 , wq
i, j11,k , wq

i, j,k),
1
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. (9c)

cq 5 cq(wq
i, j11,k , wq

i, j,k).

The azimuthal momentum equation ( j # J) can be writ-Bx 5
1
r

­

­r Srn
­ux

­r D2
1
r

­(ruxur)
­r

. (10a)
ten as
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aq 5 wq
i, j,k21 1 bqwq

i, j,k 1 cqwq
i, j,k11 5 RHSq21

i, j,k , (11c) ajv
q
i, j21,k 1 bjv

q
i, j,k 1 cjv

q
i, j11,k 5 RHSq21

i, j,k , (12b)

wherewhere

aj 5 aj(v
q21
i, j21,k , vq21

i, j,k),aq 5 aq(wq21
i, j,k21 , wq21

i, j,k),
bj 5 bj(v

q21
i, j21,k , vq21

i, j,k , vq21
i, j11,k),bq 5 bq(wq21

i, j,k21 , wq21
i, j,k11),

cj 5 cj(v
q21
i, j11,k , vq21

i, j,k).cq 5 cq(wq21
i, j,k11 , wq21

i, j,k).

The azimuthal momentum equation ( j $ J 1 1),
Here, u, v, and w have been used to denote the axial,

radial, and azimuthal velocity components, respectively.
ajw

q
i, j21,k 1 bjw

q
i, j,k 1 cjw

q
i, j11,k 5 RHSq21

i, j,k , (12c)
The subscripts (i, j, k) give the nodal position at which the
velocity components and the right-hand side, RHS, are

whereevaluated. The right-hand side contains only known infor-
mation (i.e., from substep q 2 1).

aj 5 aj(v
q
i, j21,k11 , vq

i, j21,k),As explained in the previous section the azimuthal mo-
mentum equation has to be inverted first. Equation (11c) bj 5 bj(v

q
i, j21,k11 , vq

i, j21,k , vq
i, j,k11 , vq

i, j,k),
shows that the coefficients, aq , bq , and cq , only depend on

cj 5 cj(v
q
i, j,k11 , vq

i, j,k).information from the previous substep (q 2 1) (due to
linearization) and the azimuthal momentum equation can
therefore be integrated up to and including points with In this case the radial momentum equation (12b) will
radial coordinate j 5 J. It is further seen that evaluation have to solved first to yield vq. After solving Equation
of aq , bq , and cq for the axial momentum equation will (12b), vq is known in the entire domain and the coefficients
require wq up to and including radial location j 5 J, which aq , bq , and cq in the two other momentum equations can
is now available. easily be solved.

The ‘‘problem’’ arises in the radial momentum equation, Solution of Eqs. (12) will, however, require some bound-
where it is seen from Eq. (11b) that the coefficients aq , ary condition at j 5 J (axial and azimuthal momentum
bq , and cq , depend on uq

u up to and including radial location equations) and j 5 J2 1 (radial momentum equation). But,
j 1 1. The radial momentum equation can therefore only since Eqs. (11) have been solved first, uq, vq, and wq are
be solved at points with radial location up to and including already known at their respective boundaries ( j 5 J for u
j 5 J 2 1 (in the core region). and w and j 5 J 2 1 for v) and can be used as boundary

The outer region contains all points not included in the conditions when solving Eqs. (12). It is easily verified that
core region. Thus the axial and azimuthal momentum this preserves second-order temporal accuracy.
equations are integrated from j 5 J 1 1 to the wall and
the radial momentum equation is integrated from j 5 J 6. VERIFICATION OF TEMPORAL ACCURACY
to the wall. Since all terms with derivatives in the radial

In order to verify the order of accuracy of the schemedirection are treated implicitly in the outer region, the
a numerical experiment was conducted using turbulentgeneral form of the discrete momentum equations in this
flow in a pipe as a test case. The parameters were the sameregion become:
as for the simulation described in the next section, with

The axial momentum equation ( j $ J 1 1), the exception of the grid resolution which was only 32 3
38 3 64 (axial, radial, and azimuthal directions). Even

aju
q
i, j21,k 1 bju

q
i, j,k 1 cju

q
i, j11,k 5 RHSq21

i, j,k , (12a) though this resolution is insufficient to yield an accurate
DNS solution, it is sufficient for the purpose of evaluating
the temporal error of the numerical scheme.where

Several calculations were performed starting from a fully
developed flow field at time T1 , advancing to time T2 . The

aj 5 aj(v
q
i11, j21,k , vq

i, j21,k),
number of time-steps used to cover the given time interval
was increased from 1 to 1000. The solution obtained usingbj 5 bj(v

q
i11, j21,k , vq

i, j21,k , vq
i11, j,k , vq

i, j,k),
the smallest Dt was interpreted as the ‘‘exact solution.’’

cj 5 cj(v
q
i11, j,k , vq

i, j,k). The error in the solutions obtained at increasing Dt was
formed by calculating the rms of the difference in the
solution obtained at a given Dt when compared with theThe radial momentum equation ( j $ J),
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7. DNS OF TURBULENT PIPE FLOW

The numerical scheme outlined above was developed
for a code used to study turbulent mixing in a coaxial jet-
combustor [1]. Prior to performing the calculation of the
coaxial jet-combustor, the numerical scheme was tested
extensively in turbulent flow in a pipe (using both large
eddy simulation, LES, and direct numerical simulation,
DNS). This section presents results from the DNS.

The computational domain consists of a pipe with radius
R and length 10R. The Reynolds number was 180 based on
pipe radius, R, and friction velocity, ut. Periodic boundary
conditions were used in the axial and azimuthal directions,
and no-slip was used at the wall. The computational grid

FIG. 2. Error in temporal integration scheme: ———, entire do- was stretched in the radial direction and uniform in the
main; ---, core region; –?–, outer region. axial and azimuthal directions. The grid contained 256 3

68 3 128 points in the axial, radial, and azimuthal direc-
tions, respectively. The calculation was run at a time-step,
Dt 5 0.001R/ut . The boundary between the core region‘‘exact solution.’’ In addition to calculating an average
and outer region was located at rc 5 0.5R. (See Section 9error over the entire computational domain, separate error
for an explanation of the choice of rc.)estimates were obtained in the core and outer regions.

Results from this calculation are compared with compu-A result from these calculations is shown in Fig. 2, using
tational results obtained by Eggels et al. [2] and experimen-the error in the axial velocity component as example. The
tal results obtained by Westerweel et al. [16]. Both studiesslope of the curves (in log–log coordinates) is 2, which
used Ret 5 180. The computational domain used in [2] wasverifies that the velocity field is calculated to second-order
the same as that used in the present study. Eggels et al. [2],accuracy. (Similar results were obtained from evaluating
however, treated all terms with derivatives in the azimuthalthe error in the other two velocity components).
direction implicitly in the entire computational domain.In order to show that second-order accuracy is con-
Their time-step was therefore limited by the radial resolu-served at the interface between the core and the outer
tion requirement at the wall. The grid contained 256 3region, the error was calculated separately at the grid-
96 3 128 points in the axial, radial, and azimuthal direc-points located adjacent to the interface, both in the core

and the outer regions. Figure 3 shows these results (again tions, respectively. Uniform distribution was used in all
using the error in the axial velocity component as an coordinate directions. Numerical stability considerations
example). It is apparent that the solution is second-order limited the maximum time-step to 0.0004 R/ut . This is 2.5
accurate everywhere. times smaller than that used in the present calculation.

The code used for the turbulent pipe flow calculations
treated only the diffusive terms in the radial direction in
the outer region with the second-order implicit Crank–
Nicolson scheme. All other terms were treated with the
third-order explicit RK3 scheme. In the core region both
diffusive and convective terms with derivatives in the azi-
muthal direction were treated with the second-order
Crank–Nicolson scheme. Because the RK3 scheme is third
order, the contribution to the total error from the terms
treated with this scheme is smaller than the error from
the terms treated with the second-order Crank–Nicolson
scheme. Thus, the (temporal) error is dominated by the
terms treated implicitly. Since two terms, one of which is
linearized, are treated with the implicit scheme in the core
region versus only one term in the outer region, it is ex-
pected that the error is larger in the core region. This
explains why the error in the solution is less in the outer
region than in the core region. However, the fact remains FIG. 3. Error in temporal integration scheme at the interface: ---, at

rc in the core region; –?–, at rc in the outer region.that scheme is overall second-order accurate.
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TABLE I

Grid Resolution in Wall Coordinates

DNS-AM DNS-E

Dx1 7.03 7.03
(R Du)1 8.84 8.84
(Dr Du)1

cl 0.13 0.09
Dr1

wall 0.17 1.88
Dr1

max 5.94 1.88

Note. DNS-AM is the present DNS results, and DNS-E is the DNS of
Eggels et al. [2].

The grid resolution in wall-coordinates for the two cases
is listed in Table I.

The calculation was started from an initial field of ran-
dom numbers and run to a statistically steady state before
sampling statistics. Statistics were sampled by averaging
over the homogenous directions (axial and azimuthal)
and time.

Figure 4 shows an instantaneous snapshot of the axial
FIG. 5. Instantaneous contours of the axial vorticity in a r–u plane.

velocity component in an r 2 u plane, and Fig. 5 shows
an instantaneous snapshot of the streamwise vorticity in
the same plane. Notice that the contours show no trace of

adopted for the displacement thickness, d*, and the mo-the interface between the core and the outer region.
mentum thickness, u*,Several mean-flow properties from the present simula-

tion and the reference cases are listed in Table II.
Following Eggels et al. [2], the following definitions were

d*(2 2 d*) 5 2 E1

0
r S1 2

ux(r)
Ucl

D dr, (13)

u*(2 2 u*) 5 2 E1

0
r

ux(r)
Ucl

S1 2
ux(r)
Ucl

D dr, (14)

where Ucl is the centerline velocity and all variables have
been normalized using the radius, R, and the friction veloc-
ity, ut . The coefficient of friction given in Table II is based

TABLE II

Mean Flow Properties

DNS-AM DNS-E PIV LDA

Ret 180 180 183 185.5
Ucl 19.32 19.31 19.38 19.39
Ub 14.70 14.73 14.88 14.68
Ucl/Ub 1.31 1.31 1.30 1.32
Cf 3 103 9.25 9.22 9.03 9.28
d* 0.128 0.127 0.124 0.130
u* 0.069 0.068 0.068 0.071
H 1.85 1.86 1.83 1.83

Note. PIV and LDA are measurements from Westerweel et al.,
DNS-E are results from Eggels et al. [2], and DNS-AM are the resultsFIG. 4. Instantaneous contours of the axial velocity component in a

r–u plane. from the present calculations.
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good agreement is observed between the present DNS case
and the DNS results of Eggels et al. [2]. The somewhat
high value of u9x around the peak in the profile from the
PIV measurements of Westerweel et al. is regarded as a
statistical error. Despite these problems the experimental
values agree reasonably well with the DNS data.

8. COMPUTATIONAL COST

As pointed out previously, the time-integration method
described in this paper divides the computational domain
into two sections, treating different terms in each section
with implicit or explicit time-integration schemes. The
method used by Eggels et al. [2] addressed the problems
related to the fine azimuthal grid resolution around the
centerline by treating all terms with derivatives in the azi-FIG. 6. Mean velocity profile: ———, DNS-AM; ---, DNS-E; s, PIV,

Westerweel et al.; d, LDA, Westerweel et al. muthal direction implicitly. However, this leaves a trade-
off between the minimum obtainable radial resolution and
the maximum possible time-step. The radial grid-spacing

on the bulk velocity, Ub , and calculated from the ex- used by Eggels et al. [2] was Drut/n 5 1.88; the maximum
pression: time-step, Dt, was then limited to 0.0004 R/ut .

For comparison, the maximum time-step used in the
Cf 5 twall/As rU2

b . (15) present DNS calculation was 0.001 R/ut (a factor of 2.5
higher than that used by Eggels et al. [2]) with a minimum

From Table II it follows that the present DNS results radial grid-spacing at the wall of Dr1 5 0.17. This is a factor
agree to within a few tenths of a percent with those of of 10 smaller than the radial grid-spacing used by Eggels
Eggels et al. [2]. Westerweel et al. [16] measured statistical et al. [2]. Since the maximum time-step goes as Dr2, the
quantities in turbulent pipe flow using laser Doppler ane- radial resolution used in the present case could not have
mometry (LDA) and particle image velocimetry (PIV). been used if only terms with derivatives in the azimuthal
Table II shows good agreement also with the experimental direction were treated implicitly.
results of Westerweel et al. Eggels et al. [2] report that their code needed about 5.7

Figure 6 shows the mean velocity profiles plotted in CPU hours per non-dimensional time-unit on a Cray YMP.
wall coordinates. Excellent agreement between the present This would correspond to about 2.6 CPU hours on a Cray
DNS result and the two reference cases is observed. C-90. Due to the higher time-step used, the present DNS

Turbulence intensities are shown in Fig. 7. An overall calculation required only about 1.3 CPU hours per nondi-
mensional time-unit. The numerical scheme developed in
this paper is therefore significantly less CPU time-consum-
ing than the scheme used by Eggels et al. [2], yet it allows
for more flexibility in terms of radial and azimuthal cluster-
ing of grid points.

To evaluate the CPU time savings of the new scheme,
consider the following quantity which is related to the
stability criterion if all terms are treated explicitly:

SC 5 DtHuuxu
Dx

1
uuru
Dr

1
uuuu
r Du

(16)

1 4n S 1
Dx2 1

1
Dr2 1

1
(r Du)2DJ .

The first three terms on the right-hand side of Eq. (16)
are related to the convective terms and the last three termsFIG. 7. Turbulence intensities: ———, DNS-AM; ---, DNS-E; s, PIV,

Westerweel et al.; d, LDA, Westerweel et al. are due to the diffusive terms. The maximum of the terms
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in Eq. (16) were calculated in the simulation described
previously (DNS-AM), both in the core and in the outer
region, yielding

SC 5 HDtuuxu
Dx

1
Dtuuru

Dr
1

Dtuuuu
r Du

Core: 0.5 0.1 5.0

Outer: 0.5 0.6 0.1

1
Dt4n
Dx2 1

Dt4n
Dr2 1

Dt4n
(r Du)2J

1.5 3 1022 0.1 1.8 3 102

FIG. 8. The maximum of the terms in Eq. (16) plotted versus radial
1.5 3 1022 25.0 3.1 3 1022 . distance: ———, Dtuuxu/Dx; –––, Dtuuru/Dr; ---, Dtuuuu/r Du; ???, Dt4n/Dx2;

–?–, Dt4n/Dr2; –??–, Dt4n/(r Du)2.

The stability limit for a fully explicit RK3 scheme is
SC # Ï3. It is clear that both the convective and diffusive
terms with derivatives in the azimuthal direction have to where the grid is fairly coarse in all coordinate directions.
be treated implicitly in the core region in order to be able For flow in a pipe this means away from the centerline
to maintain the time-step used in the simulation. If the and away from the wall. Fortunately it seems to be quite
convective terms (with derivatives in the azimuthal direc- arbitrary where the interface is placed as long as regions
tion) were treated explicitly, the time-step would have to with very fine grid is avoided. This is illustrated in Fig. 8,
be reduced by a factor of 5/Ï3 in order to maintain numeri- which shows the contribution to the stability criterion (SC)
cal stability. Treating the diffusive terms (with derivatives from each term in Eq. (16), plotted versus radial distance
in the azimuthal direction) explicitly in the core region (for the case described in Section 7).
would reduce the maximum time-step by a factor of 100. It is clear that the terms Dtuuuu/r Du and Dt4n/(r Du)2

Thus, it is clearly important to treat these terms implicitly. impose severe time-step limitations close to the centerline.
In the outer region it is seen that the diffusive terms (with At the wall, the term Dt4n/Dr2 is seen to pose significant
derivatives in the radial direction) need to be treated im- restrictions. However, there is a fairly wide range (from
plicitly in order to avoid significant time-step restrictions. about r/R 5 0.15 to r/R 5 0.9), where all the terms in Eqs.

This analysis also shows why it makes little sense to (16) are small and of roughly the same order of magnitude.
treat all diffusive terms implicitly and all convective terms The interface, rc , could be placed anywhere in this range
explicitly as proposed in [8]. First of all, there is no need without significantly affecting the maximum time-step al-
to treat diffusive terms with derivative in the axial direction lowed.
implicitly in any region of the flow. Since explicit schemes
generally are simpler and less CPU intensive, they should 10. SUMMARY
be used whenever possible. Lastly, the analysis shows that
in some cases it may be important to also treat convective A method has been developed for temporal integration
terms implicitly in order to avoid significant time-step re- of the Navier–Stokes equations formulated in cylindrical
strictions. Which terms to treat explicitly/implicitly should coordinates. One of the problems faced in cylindrical coor-
therefore be tailored to the specific problem at hand. dinates, particularly in confined axisymmetric geometries,

is that in order to obtain sufficient azimuthal resolution at
the wall, the azimuthal resolution in the core of the flow9. WHERE TO PLACE THE INTERFACE
becomes unnecessarily fine, leading to significant time-step
limitations if explicit time-integration schemes are used.In general the location of the interface is determined to

maximize the time-step. The error estimate, described in At the same time it is desirable to maintain a fine radial
resolution at the wall.Section 6, is generally not used to determine rc since the

error in each region is determined by the temporal integra- The method described in this paper divides the computa-
tional domain into two regions in which terms with deriva-tion scheme used. However, the overall error may in some

cases (see Sections 6 and 7) be reduced by moving the tives in only one coordinate direction are treated implicitly.
This leads to at most one nonlinear equation which caninterface either towards the centerline or the pipe wall.

The general rule is to place the interface in a region easily be linearized. The solution scheme is therefore much
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